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This paper deals with an optimal placement problem of sensors and actuators for
active vibration control of #exible structures. For undamped structures with
collocated rate sensors and actuators, two solutions of generalized algebraic
Riccati equations (generalized control algebraic Riccati equation, GCARE;
generalized "ltering algebraic Riccati equation, GFARE) are obtained explicitly.
Employing these explicit solutions, we can obtain a stabilizing H

=
controller based

on the normalized coprime factorization approach without solving any algebraic
Riccati equations numerically. Generally, in a optimal sensor/actuator placement
problem with a model-based control law (LQG or H

=
), the feedback controller

needs to be obtained for all candidates of the optimal placement (which may be
derived with some numerical optimization techniques) by solving algebraic Riccati
equations numerically. Therefore, the amount of computation required to
determine the optimal sensor/actuator placement and the controller increases
rapidly for large-scale structures which have many pairs of sensor/actuators. The
H

=
controller in this paper can be obtained just by addition and multiplication

of several matrices. Furthermore, a closed-loop property on H
=

norm is
automatically bounded for all candidates of the optimal placement. Hence, we can
formulate the optimal sensor/actuator placement problem to optimize other
closed-loop properties (norm of the closed-loop system) with less computational
requirement than the model-based method mentioned above. The gradient of the
H

2
norm of the closed-loop system, which is necessary for a descent-based

optimization technique, is derived. Using this sensitivity formula, we obtain the
optimal placements of two pairs of sensors and actuators which minimize the H

2norm of the closed-loop system for a simply supported beam by the quasi-Newton
method. The simulation results show the e!ectiveness of the proposed design
method.

( 2000 Academic Press
1. INTRODUCTION

Over the past decade, many researchers have reported on the active vibration control
of #exible structures, e.g., large space structures, civil structures, etc. However, a clear
solution of the optimal sensor/actuator placement problem has not been obtained.
In general, it is impossible to determine both the optimal}model-based controller
0022-460X/00/051057#19 $35.00/0 ( 2000 Academic Press
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and the sensor/actuator placement simultaneously, since the controller can be
calculated after the sensor/actuator placement is "xed. This fact means that we have
to use a sequential numerical optimization technique to obtain the optimal controller
and the placement. For this problem, Onoda et al. [1] dealt with the optimal
sensor/actuator placement problem in the framework of integrated control-structure
design. Kondoh et al. [2] determined the sensor/actuator placement which
minimizes the linear quadratic cost function in an LQ problem using a non-linear
optimization technique. Devasia et al. [3] optimized several cost functions on
vibration suppression by tuning the position and the size of a collocated
piezoelectric sensor/actuator bonded on the structure. Obinata et al. [4] studied
the sensor placement problem to prevent the spillover for #exible structures. In Rao
et al. [5] and Tsujioka et al. [6], the optimal placement and the corresponding
feedback controller are obtained using genetic algorithms. As another approach,
several open-loop sensor/actuator placement strategies based on the controllability
and observability are also proposed by Gawronski and Lim [7].

These reports employed model-based control design methods such as LQ, H
=

,
etc. A model-based controller is obtained after its sensor/actuator placement is
"xed. These reports use the following sequential design method to "nd the optimal
controller and the sensor/actuator placement:

Step 1. Choose the candidate of the sensor/actuator placement.
Step 2. Obtain the controller for the placement with some model-based

controller design method. If speci"cations on the closed-loop system are satis"ed,
then stop. Otherwise, go to step 1 and modify the sensor/actuator placement.

In the above design algorithm, we must obtain the controller for the mathematical
model de"ned in step 1 by numerical computation (e.g., solving matrix-valued
algebraic Ricatti equation or Lyapunov equation). As the scale of the controlled
structure becomes large or as the number of sensor/actuators is increased, the
corresponding computation for obtaining the optimal placement(s) and the
controller increases extensively. This growth of computational requirement may
be a serious bottleneck to "nd the optimal solution even if the optimization
problem itself can be formulated. Of course, if one employs a static output feedback
control law with collocated sensor/actuator (DVFB control), which does not need
the solution of any matrix-valued equations, then the stability of the closed-loop
system for all candidates of the optimal sensor/actuator placement is guaranteed.
However, in the case of DVFB, it is necessary to tune the feedback gain matrix
numerically for all candidates to satisfy the required closed-loop performance, e.g.,
vibration suppression or robustness, etc. Hence, other computational di$culties for
tuning the feedback gain matrix may arise while obtaining the optimal controller in
the DVFB scheme. From the above discussion, it is clear that an e$cient
model-based control law which satis"es some speci"ed closed-loop performances
with less computational requirement (no need to solve any matrix-valued equation
numerically and to tune gain matrices) to obtain the optimal sensor/actuator
placement and the controller is desirable.

In this paper, we consider the optimal sensor/actuator placement problem for
undamped #exible structures with collocated sensors and actuators. For this class
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of the control object, solutions of two generalized algebraic Riccati equations
(generalized control algebraic Riccati equation, GCARE; generalized "ltering
algebraic Riccati equation, GFARE) can be obtained explicitly [8]. Using these
solutions, we can synthesize an H

=
controller based on the normalized coprime

factorization approach [9] without solving any matrix-valued algebraic equations.
Furthermore, an H

=
norm of the closed-loop system is bounded automatically for

all candidates of the optimal placement. This result simpli"es the optimal
placement problem since no computational di$culties arise in designing the
feedback controller. Moreover, we can use the freedom of sensor/actuator
placement to minimize other closed-loop speci"cations.

This paper is organized as follows. We state the mathematical model of the
control object and formulate the optimal sensor/actuator placement problem in
section 2. In section 3, it is shown that the normalized factorization-based H

=
controller can be obtained explicitly for the control. In section 4, we rewrite the
optimal placement problem using the result in section 3 as a standard
descent-based numerical optimization problem. The sensitivity formula is derived
in the case that the performance criterion to be optimized is given as a H

2
norm of

the closed-loop system. Using this expression, we can utilize a descent-based
optimization technique such as the steepest descent method or the quasi-Newton
method, etc. A design example for the simply supported beam-like structure is given
in section 5. In section 6, we present the conclusion of this paper.

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. MODEL OF THE CONTROLLED OBJECT

We consider an undamped N degrees of freedom (d.o.f.s) #exible structure which
is de"ned as

MqK#Kq"L
u
u#L

w
w. (1)

In the above equation, q"[q
12

q
N
]T is the displacement vector, w"

[w
12

w
Nw

]T is the disturbance vector, and u"[u
12

u
Nu

]T is the input vector
respectively. The ith entry of the vector u corresponds to the force provided by the
ith actuator. The matrices M and K are N]N mass and N]N sti!ness matrices,
respectively. Note that we assume the matrices M and K are positive de"nite in this
paper. Matrices L

u
and L

w
are N]N

u
and N]N

w
matrices respectively. Assume

that a vector N"[m1
a 2

mNu
a

]T gives a candidate of N
u

actuator placement. Each
element mi

a
(i"1,2, N

u
) indicates the candidate of ith actuator placement. De"ne

a set C
a

which is constructed with all feasible candidates of the vector
N"[m1

a 2
mNu
a

]T. Then, the matrix L
u
in equation (1) can be regarded as a function

of N3C
a
.

Equation (1) can be transformed into the modal form with q"Tqm where
qm"[qm

1 2 qm
N
]T is the modal displacement vector and T is the N]N co-ordinate

transformation matrix. By substituting q"Tqm into equation (1), we obtain

qK m#R2qm"Gw#Hu, (2)
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where

R"diag(u
1
,2, u

N
)'0, G"TTL

w
"

G
1- - -

F
- - -
G

N

, H"TTL
u
"

H
1- - -

F
- - -
H

N

.

De"ne x,[qm
1

qR m
1
/u

1
2qm

N
qR m
N
/u

N
]T as a state vector. It is assumed that N

u
rate

sensors are installed at the same location and the directions of the actuators.
Therefore, N

u
pairs of sensor/actuator collocation are realized. Then, the

state-space representation of the control object is given as

x5 "Ax#B
w
w#Bu,

z"C
z
x#D

z
u, (3)

y"Cx,

where

A"blockdiagGC
0

!u
1

u
1

0 D2C
0

!u
N

u
N

0 DH , B
w
"

0
1]Nw

G
1
/u

1
F

0
1]Nw

G
N
/u

N

,

B"

0
1]Nu

H
1
/u

1
F

0
1]Nu

H
N
/u

N

, C"[0
Nu

]1
u

1
H

1
2 0

Nu
]1

u
N
H

N
]

In equation (3), z is the controlled output vector which is related to the performance
of the system, and y is output vector which is observed by the N

u
rate sensors. In the

rest of this paper, we denote the transfer function matrix from [wT uT]T to
[zT yT]T as

C
z
yD"P(s) C

w
u D , P(s)"C

P
zw

(s)
P

yw
(s)

P
zu

(s)
P

yu
(s)D , (4)

where the symbol s denotes Laplace operator.
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2.2. OPTIMAL PLACEMENT PROBLEM

Let us consider the closed-loop control system in Figure 1. K (s) is the feedback
controller which is designed to suppress the vibration of the structure represented
by equation (3). In this paper, we formulate the optimal sensor/actuator placement
problem as the following optimization problem.

Problem. Find the optimal sensor/actuator placements N*3C
a

for the structure
(given in equation (3)) and the optimal controller K(s) which minimizes

J,EW
z
(s)G

zw
(s)E , (5)

where E ' E denotes some norm of transfer matrix. The transfer function matrix
G

zw
(s) is the closed-loop transfer function matrix, which is enclosed by broken line

in Figure 1, from w to z. The transfer function matrix W
z
(s) is a frequency weighting

which represents the design speci"cation.
This formulation is essentially the same as those of references [1}6] in the sense

that design parameters of the optimization problem exist both in a structure
(including sensor/actuator placement) and a feedback controller for active control.
In these studies, the feedback controller and the optimal sensor/actuator placement
were obtained by the following sequential procedure (in references [1}6] other
structural parameters were also optimized):

Step 1. Choose an actuator placement candidate vector N3C
a
.

Step 2. Obtain the controller for N3C
a
chosen in step 1 with some model-based

linear controller design techniques (LQ, H
=

, etc.). If speci"cations on the
closed-loop system are satis"ed in some sense, then stop. Otherwise, go to step
1 and change N in C

a
with several numerical optimization techniques by "xing the

controller.

This design method is required to obtain the feedback controller for each
candidate of the sensor/actuator placement by solving some matrix-valued
Figure 1. Closed-loop system.
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algebraic equations numerically (e.g., algebraic Riccati equation or Lyapunov
equation). This computational requirement (computational time) may become
a serious problem in performing the optimization when large number of optimal
placements must be determined. Furthermore, we have to check the stability
of the closed-loop system when we search for the new candidate of the placement in
step 2 since the feedback controller must be "xed in the search. This checking
process may be another source of the computational requirement of the design
algorithm.

3. CONTROLLER DESIGN METHOD

Let us consider the closed-loop control system depicted in Figure 2. The scalar
a'0 is a parameter which is speci"ed by the designer. The role of this parameter
will be presented later. Each d

i
(i"1, 2) is disturbance vector. The system K

a
(s) is

the feedback controller for the augmented plant P
a
(s)"aP

yu
(s) which is enclosed by

the dashed line in Figure 2. For P
a
(s), let us consider the following two generalized

algebraic Riccati equations [9] given as

ATS#SA!a2SBBTS#CTC"0, (6)

AT#TAT!TCTCT#a2BBT"0. (7)

Assume that two positive-de"nite solutions of equations (6) and (7) are given as

S"diag[s
1
, s

1
, s

2
, s

2
,2, s

N
, s

N
] , T"diag[t

1
, t

1
, t

2
, t

2
,2, t

N
, t

N
] (8)

where s
i
, t

i
'0 (i"1,2, N). Then, ATS#SA"AT#TAT"0 is easily veri"ed.

Since the relation C"BTX, where X,diag[u2
1
, u2

1
, u2

2
, u2

2
,2, u2

N
, u2

N
], is
Figure 2. Block diagram of the closed-loop system with P
yu

(s) and H
=

controller K
=

(s).
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satis"ed in equation (3) we have

a2SBBTS"XBBTX , TXBBTXT"a2BBT. (9, 10)

From equations (9) and (10), S and T are explicitly given as [8]

S"X/a, T"aX~1. (11, 12)

Hsiao et al. [8] obtained an LQG controller for a #exible structure using the
above explicit solutions and discussed the performance of the closed-loop system.
In this paper, we derive H

=
controller based on normalized coprime factorization

[9] using those explicit solutions. We brie#y give the outline of the problem
formulation and the controller synthesis procedure of reference [9]. Assume that
P
a
(s) is represented by the following left coprime factorization:

P
a
(s)"M(s)~1N (s), (13)

where M(s), N (s)3RH
=

are normalized left coprime factors such that

M(s)*M (s)#N(s)*N(s)"I. (14)

The set RH
=

consists of all stable and proper transfer function matrix. The
superscript * denotes the complex conjugate of M (s). Normalized coprime factor
robust stabilization problem [9] is to "nd the stabilizing controller K(s) for
perturbed plant which is given by

Pe (s)"M (M(s)#D
M

(s))~1 (N(s)#D
N
(s)) : E[D

M
(s) D

M
(s)]E

=
(e('0)N , (15)

where E ' E= denotes H
=

norm. McFarlane and Glover [9] show that K(s) stabilize
Pe(s) if and only if

J
=
,KK C

I
K(s)D KK (I!P

a
(s)K(s))~1[I P

a
(s)] KK

=

)

1
e
, (16)

and the minimum value of J
=

(maximum value of e) is given by [9]

c
.*/

, inf
K(s)3X

Pa

J
=
" sup

K(s)3X
Pa

e"(1!EM(s) N(s)E2
H
)~1@2"M1#j

max
(ST)N1@2, (17)

where E ' E
H

and j
max

( ' ) denote the Hankel norm and maximum eigenvalue
respectively. The set X

Pa
consists of all feedback controllers which stabilize P

a
(s).

Furthermore, the state-space representation of the controller K
a
(s)3X

Pa
to achieve

J
=
(bc

min
(b'1) can be expressed as [9]

x
Ka
"A

Ka
x
Ka
#B

Ka
y,

u
a
"C

Ka
x
Ka

,
(18)
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where

A
Ka
"A!a2BBTS#(bc

min
)2W~TTCTC,

B
Ka
"(bc

min
)2W~TTCT,

(19)

C
Ka
"aBTS,

W"M1!(bc
min

)2NI#ST.

Substituting the two explicit solutions of the algebraic Riccati equations
(equations (11) and (12)) into equation (17), we obtain the minimum value of
c (,c

min
) as

c
min

"J2 (∀a'0). (20)

The state-space representation of K
a
(s) is given by

A
Ka
"A#

a(2b2!1)
1!b2

BBTX, B
Ka
"

ab2

1!b2
B, C

Ka
"BTX. (21)

The feedback controller K
=

(s) (enclosed by dotted line in Figure 2) for P(s) is
obtained by the following procedure:

1. Choose a'0, b'1. De"ne P
a
(s)"aP

yu
(s).

2. Obtain the controller K
a
(s) for P

a
(s) from equation (21) and set K

=
(s)"aK

a
(s).

Note that using an explicit expression of S and T, we can obtain the state-space
form of stabilizing controller K

a
(s) just by addition and multiplication of several

matrices. There is no need to solve any matrix-valued equations (Riccati or
Lyapunov, etc.) numerically. Therefore, the model-based controller in equation (21)
can be obtained with less computational requirements as compared to other
model-based control laws such as LQG or H

=
. Of course, the direct velocity and

displacement feedback framework [13] (DVFB control law) such as

u"!K
p
q!K

v
q5 , (22)

where
K

p
"KT

p
*0, K

v
"KT

p
*0, (23)

provides a stabilizing controller without any numerical computation. However,
this control scheme only guarantees the closed-loop system to be stable. Therefore,
one must tune the feedback gain matrix K

p
and K

v
to satisfy the speci"ed

closed-loop property, such as disturbance rejection property. In contrast to DVFB,
by K

=
(s) in equation (16), we can easily show J

=
"c

min
"J2, and inequalities

given as

E (I!P
yu

(s)K
=

(s))~1E
=
(J2b, (24)
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E (I!P
yu

(s)K
=

(s))~1P
yu

(s)E
=
(

J2b
a

, (25)

EK
=

(s) (I!P
yu

(s)K
=

(s))~1E
=
(J2ab, (26)

EK
=

(s) (I!P
yu

(s)K
=

(s))~1P
yu

(s)E
=
(J2b (27)

are satis"ed since the following inequality holds:

min
K(s)3X

Pa

J
=
" min

K(s)3X
Pa
KK C

I
K(s)D (I!P

a
(s)K(s))~1[I P

a
(s)] KK

=

"KK C
I

K
a
(s)D (I!aP

yu
(s)K

a
(s))~1[I aP

yu
(s)] KK

=

"KK C
I

K
a
(s)
a D (I!P

yu
(s)K

=
(s))~1[I aP

yu
(s)] KK=(J2b.

Inequalities (24)}(27) hold for all candidates of the optimal sensor/actuator
placement from equation (20). (Note that the stability of the closed-loop system is
always guaranteed.) This property is quite important since we can obtain the
achievable closed-loop performance (in the sense of H

=
norm) before computing

the controller. In the case of general control object, the closed-loop performance is
unknown until the controller is obtained. This good property simpli"es the
controller synthesis procedure remarkably and also means that we can tune the
sensor/actuator placement to optimize the other closed-loop performance (e.g.,
H

2
or ¸

1
norm, etc.). Furthermore, inequalities (24)}(27) show the advantage of

K
=

(s) over DVFB controller, since DVFB controller cannot satisfy such
closed-loop speci"cations without tuning the feedback gain K

p
and K

v
in equation

(23) for each candidate of sensor/actuator placement.
The left-hand sides of equations (25) and (26) correspond to the H

=
norm of

closed-loop transfer matrices from d
1

to y and d
2

to u, respectively, as shown in
Figure 1. By making E (I!P

yu
(s)K

=
(s))~1P

yu
(s)E

=
small, the closed-up

characteristic on the disturbance rejection is improved. On the other hand, one can
obtain the robust stability of the closed-loop control system by setting
EK

=
(s) (I!P

yu
(s)K

=
(s))~1E

=
smaller in the frequency range where a large

modelling error exists. However, it is clear that we cannot make both of them small
arbitrarily, since inequalities (25) and (26) indicate that there is a tradeo! for the
parameter a'0, between the performance on the disturbance rejection and the
robustness of the closed-loop system. Therefore, we can choose a suitable scalar
a from the speci"cation on the disturbance rejection of the closed-loop system and
the information about the modelling error distribution in the frequency domain.
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From the above discussions, it can be summarized that the controller K
=

(s) has
three superior properties for the optimal sensor/actuator placement problem. First,
the computational requirement to obtain the optimal sensor/actuator placement
and feedback controller is smaller than conventional model-based control law
(LQG or H

=
) because K

=
(s) is obtained without solving any matrix-valued

equations numerically. Second, since the closed-loop performance for all
candidates of the placement automatically holds in the sense of equations (24)} (27),
the controller K

=
(s) is not necessary for tuning feedback gains, such as DVFB, to

achieve a speci"ed closed-loop performance level. Third, the freedom in tuning
placement of the sensor/actuator can be utilized to optimize other closed-loop
speci"cations.

4. OPTIMIZATION PROCEDURE

With the controller expression in equation (21), the state-space representation of
the closed-loop system G

zw
(s) is expressed as

x5
c
"A

c
x
c
#B

c
w,

z"C
c
x
c
,

(28)

where

x
c
"C

x
x
Ka
D , A

c
"C

A
B

Ka
(N)C (N)

aB (N)C
Ka

(N)
A

Ka
(N) D , B

c
"C

B
w
0 D ,

(29)

C
c
"[C

z
aD

z
C

Ka
(N)]

Then, the optimal sensor/actuator problem given in section 2 can be rewritten as
the following standard optimization problem.

Problem. Find the optimal sensor/actuator placement N*3C
a

for the closed-loop
system given in equation (29) that minimizes J in equation (5).

Remark 1. The formulated optimal sensor/actuator placement similar to the above
one can be found in references [10}12]. In these references, the optimal
sensor/actuator placement is determined by optimizing a single objective function.
On the other hand, by using the controller in equation (21), we can optimize J of
equation (5) by maintaining the closed-loop H

=
norm properties given as equations

(24)}(27).
If J is partially di!erentiable on the elements of N, i.e., mi

a
, one can utilize standard

descent-based optimization techniques (steepest descent or quasi-Newton method,
etc.) to solve the optimization problem e$ciently. (If J is not di!erentiable, some
non-gradient-based-optimization techniques may be employed. Even in such
situations, the computational requirement will be smaller than conventional
model-based cases because of the fact which is discussed in section 3.) As an
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example, we derive LJ/Lm i
a
(i"1,2, N

u
) for J"EG

zw
(s)E2

2
where E ' E2 denotes the

H
2

norm. Then, J is given as

J"tr(C
c
L

c
CT

c
), (30)

where tr( ' ) denotes trace function of a matrix. The matrix L
c
is the controllability

grammian of the closed-loop system which solves

A
c
L
c
#L

c
AT

c
#B

c
BT
c
"0. (31)

By partially di!erentiating equation (30) with respect to mi
a
, we obtain

LJ
Lmi

a

"trA
LC

c
Lmi

a

L
c
CT

c
#C

c

LL
c

Lmi
a

CT
c
L

c

LCT
c

Lmi
a
B . (32)

In the above equation, the matrix LC
c
/Lmi

a
is given by

LC
c

Lmi
a

"C0 aD
z

LC
Ka

(N)

Lmi
a
D"C0 aD

z

LB(N)T

Lmi
a

XD , (33)

where LB(N)/Lmi
a

is the 2N]N
u

constant matrix which is obtained by
di!erentiating the matrix B in equation (3) on mi

a
. The 4N]4N matrix LL

c
/Lm i

a
is

given as the solution of the following matrix-valued equation:

A
c

LL
c

Lmi
a

#

LL
c

Lmi
a

AT
c
#

LA
c

Lmi
a

L
c
#L

c

LAT
c

Lm i
a

"0, (34)

where the constant matrix LA
c
/Lmi

a
can be derived as

LA
c

Lmi
a

"

0 a A
LB (N)
Lmi

a

C
Ka
#B(N)

LC
Ka

Lmi
a
B

LB
Ka

Lmi
a

C (N)#B
Ka

LC (N)

Lm i
a

LA
Ka

Lmi
a

"

0 aD
B

ab2

1!b2
D
B

a (2b2!1)
1!b2

D
B

, D
B
"A

LB (N)
Lm i

a

B(N)T#B(N)
LB(N )T

Lmi
a
BX. (35)

From equations (30)}(35), we can obtain LJ/Lmi
a
.

Remark 2. The formulated problem does not need to take any sequential
procedures which is given in section 2.2, because the closed-loop system can be
de"ned (as in equation (29)) uniquely only by setting the candidate of the
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placement. Therefore, the objective function J always converges to a local
minimum when we apply several gradient-based optimization techniques to the
formulated problem. However, the convergence to the global minimum is not
guaranteed, since the objective function such as the norm of the closed-loop
transfer matrix is generally non-convex on the structural parameters including the
sensor/actuator placements. This fact means that we may have to repeat the
optimization procedure from di!erent initial placements to obtain satisfactory
results.

5. DESIGN EXAMPLE

As a design example, we consider a sensor/actuator placement problem for
a simply supported beam with length ¸, as depicted in Figure 3. De"ne the
horizontal and vertical co-ordinates as m and t respectively. The disturbance force
w(t), where t denotes the time, is applied at m"m

w
. At m"m1

a
and m2

a
, actuators

which produce the force u1(t) and u2 (t) are installed to suppress the vibration
actively. Two rate sensors are also installed at m"m1

a
and m2

a
respectively. The

equation of motion and the boundary condition of this system are given as

EI
L4t(m, t)

Lm4
#oS

L2t(m, t )
Lt2

"w(t)d (m!m
w
)#

2
+
i/1

ui(t)d(m!mi
a
), (36)

t(0, t)"t(¸, t)"0,
L2t (0, t)

Lm2
"

L2t(¸, t)
Lm2

"0, (37)

where E, I, o, S and d (m) are Young's modulus, moment of inertia of area, density,
cross-sectional area of the beam and Dirac's delta function respectively. For the
system in equations (36) and (37), assume that t(m, t) can be approximated by

t(m, t)"
N
+
i/1

q
1
(t)/

l
(m), (38)

where q
l
(t) is the unknown function of t and /

l
(m) is the normalized eigenfunction

which satis"es the boundary condition (2). By substituting equation (38) into
Figure 3. Simply supported beam system.



OPTIMAL SENSOR/ACTUATOR PLACEMENT 1069
equation (36), we obtain the N d.o.f. system given in equation (2). By letting
u(t)"[u1(t) u2 (t)]T, each matrix in equation (2) of this beam system is given
as

G"

/
1
(m

w
)

F

/
N
(m

W
)

, H"

U1a
F

UNa

, Uia"[/
i
(m1

a
),/

i
(m2

a
)] ,

u
i
"(in)2JEI/oS¸4 (i"1,2, N). (39)

In this example, we search for the optimal sensor/actuator placement N*"
[(m1

a
)
015

(m2
a
)
015

]T to minimize J
e
,EW

z
G

zw
(s)E2

2
, where G

zw
(s) is the closed-loop

transfer matrix, from the disturbance w to z,[t (m1
z
) t(m2

z
) u]T (u,[u

1
u
2
]T)

and W
z
"diag(1, 1, o

w
I
2
) (o'0). The set C

a
(all feasible candidates of the

placement) is de"ned as

C
a
,GN3R2 K C

0
0D(N(C

¸

¸DH , (40)

where Rm denotes m-dimensional real vector space. The gradient-based
optimization is performed in the case of E"1 Pa, I"1 m4, o"1 kg/m3,
S"1 m2, ¸"1 m, N"10, m

w
"0)4¸, m1

z
"0)3¸, m2

z
"0)6¸, a"10, and

o
w
"1]10~10 using standard quasi-Newton method. Each LJ

e
/Lmi

a
(i"1, 2) (the

gradient of the objective function J
e
on each design parameter mi

a
) is obtained using

the results in section 4. Note that this problem formulation is the H
2
/H

=
control

problem. Note also that due to the fact as stated in remark 2, the optimization
procedure is repeated for several initial sensor/actuator placements N

0
which are

selected randomly. The optimization history of the objective function J
e

and the
sensor/actuator placement N"[m1

a
m2
a
]T are shown in Figures 4 and 5 respectively.

It is found that J
e
and N converge after about 60 iterations. The optimized value of

the objective function J
e
becomes 1)5958]10~3. In Figure 5, each location of the

node of the vibration (from 1st to 10th modes) is depicted by a chain-dotted line. It
is clear that the optimal placement never corresponds to any nodes, such that
actuators can suppress all of the modes of the vibration. Figures 6(a) and (b) show
open-loop responses of the beam at m"m1

2
and m"m2

2
in the case where impulse

disturbances are applied at m"m
w
. Since our problem formulation assumes an

undamped structure (all poles of the structure (equation (3)) lie on the imaginary
axis of the complex s-plane), it can be seen from Figures 5 and 6 that each
open-loop response does not decay. The closed-loop impulse responses of the beam
at m"m1

z
, m"m2

z
, and the corresponding control e!orts for the same disturbance as

the above open-loop case are shown in Figure 7. In each "gure, the closed-loop
de#ection of the beam and the corresponding control e!ort are compared in the
case of initial sensor/actuator placements N

0
"[0)930 0)846]T with that of the



Figure 4. Optimization history of the objective function J
e
.

Figure 5. Optimization history of the sensor/actuator placement N"[m1
a

m2
a
]T. Each chain-dotted

line depicts the node of the vibration (1st to 10th).
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optimized one N*"[0)541 0)389]T. It is clear that the optimized closed-loop
damping properties (e.g., maximum de#ection, settling time, etc.) are improved
while the maximum amplitude of the control e!ort is kept similar to that of the
initial placement case. For comparison, we consider a criterion Jc

e
on the



Figure 6. Impulse responses of the open loop system: (a) response at m1
z
"0)3¸; (b) response at

m2
z
"0)6¸.
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controllability and observability which is given as

J c
e
"

1
J
co

, J
co
,

N
+
j/1

p2
j
, (41)

where p
j
is the jth Hankel singular value of P

yu
(s) in equation (4). By minimizing J c

e
,

we can obtain the optimal placement which maximizes the controllability and
observability with N

u
pairs of sensors and actuators for all modes. The computation

of those Hankel singular values can be found in reference [7]. Note that we
introduce the modal damping m

i
"10~3 (i"1,2, N) in calculating Jc

e
to

guarantee p
j
'0 ( j"1,2 , N). We calculate Jc

e
for all candidates of

sensor/actuator placement (0(m1
a
(1, 0(m2

a
(1). The three-dimensional plot of

J
co

("1/Jc
e
) for m1

a
and m2

a
is given in Figure 8. From this "gure, the optimal



Figure 7. Impulse responses of the closed-loop system: (a) de#ection of the beam at m1
z
"0)3¸;

(b) de#ection of the beam at m1
z
"0)6¸; (c) control e!ort u

1
; (d) control e!ort u

2
. - - - -, initial

placement (N
0
"[0)930¸, 0)846¸]T) **, optimal placement (N*"[0)541¸, 0)389¸]T).
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placement in the sense of equation (39) is m1
a
"m2

a
"0)5, i.e., the center of the beam.

For m1
a
"m2

a
"0)5 the H

=
controller in equation (21) is obtained. Then, the value of

J
e

at m1
a
"m2

a
"0)5 becomes 8)7369]10~3. By comparing these results with ours

(J
e
"1)5958]10~3), we can demonstrate the e!ectiveness of the proposed design

method.

6. CONCLUSION

This paper considered a optimal sensor/actuator placement problem for #exible
structures. The results are summarized as follows:

1. Using two explicit solutions of generalized algebraic Riccati equations which
can be given for undamped structures with collocated rate-sensor/actuator



Figure 7. Continued.
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pairs [8], we show that the H
=

controller based on the normalized coprime
factorization [9] is obtained without any solving any matrix-valued algebraic
equations.

2. By employing this H
=

controller, we formulate the optimal placement problem
with much less computational complexity than placement problems which were
previously proposed. It is shown that several gradient-based optimization
algorithms can be applied to the problem. As an example, the gradients of design
parameters (the sensor/actuator placement) are given in the case where the
objective function is the H

2
norm of the closed-loop system.

3. An optimization for a simply supported beam is conducted with the
quasi-Newton method as a design example. The results con"rm the e!ectiveness
of the proposed design method.



Figure 8. Three-dimensional plot for J
co

("1/J c
e
) for m1

a
and m2

a
.
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Further work is undertaken for extending the class of the control object
(including lightly damped #exible structures) where a proposed H

=
control law can

be applied.
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